Latch 1 is cleared by ALPHNUM.

NOTICE TO ALL PERSONS RECEIVING THIS DRAWING CONFIDENTIAL: Reproduction forbidden without the specific written permission of Atari, Inc. Subivale, California. This drawing is only conditionally owned and neither receipt nor possession thereof conveys to you the right to use the subject matter of the drawing or any design or technical information shown therein, nor any right to reproduce this drawing or any part thereof, except to manufacture by vendors of Atari, incorporated and its manufacturers under the corporation's written permission, or the subject matter thereof unless by written agreement with or written permission from the corporation.

Sheet 2, Side A

Cocktail Asteroids
Video Generator
Section of 034986-XX G

Atari

© 1979 Atari, Inc.
X AND Y POSITION COUNTERS

"jumping" to this new position, the beam itself is turned off to prevent unwanted lines from appearing on the screen. To preset this new position into the counters, the state generator causes LDESTROBE to go low. At this time, a new 12-bit number (DVX0-11) is loaded into the counters from the vector generator memory data latches.

The state machine can also instruct these counters to count up or down any specific number of counts. This will cause the beam to move to the left or to the right a specific distance relative to where it was. During this beam movement, the beam is turned on with the desired intensity. This is the procedure used to draw a vector on the monitor screen. The direction (to the left or right) and length (0 to 1023) of the vector to be drawn relative to the beam's current position is determined by DVX0-11 (from the vector generator memory data latches). This data contains information that determines how many clock pulses the counters will receive and whether the counters will count up or down.

DVX0-9 memory data is loaded into rate multipliers J8 and K8. The function of these devices is to space the desired number of counter clock pulses at equal intervals over the time period that it will take to draw the desired vector. This insures that vectors of different lengths will still be displayed with the same relative beam intensity. DVX10 and 11 are loaded directly into the counters. DVX10 determines whether the counters are to control the select input of multiplexers (J8 and K8), or to select analog-to-digital converter signals) and multiplexers (D10, E10, and F10), and H11. The output of the down/up counter that represents the horizontal monitor screen (or X axis), with 0 being 0 and 100 being the far right side of the screen, is the binary number output of the rightmost, respectively. The vector instruction is determined by its memory, and that data to alter the binary count of the counters to an entirely different position. This will cause the location on the monitor screen instantaneous new vector from a different starting position to end. While the beam is
The purpose of the vector timer is to time out the length of time it takes to "draw" an actual vector on the monitor display. During the interval when the X and Y position counters are actually drawing the vector, STOP is high. This prevents the vector generator state machine from advancing to its next state until the vector currently being drawn is completed. As soon as the vector has been drawn, STOP goes low, allowing the state machine to advance to the next state in its intended sequence.

The vector timer consists of multiplexer F6, decoder E7, LATCH M7, ADDER M6, and counters B7, C7, and D7. M7 contains a scale factor which is added in M6 to the four timer signals. If TIMER0 thru TIMER3 inputs are any state but all high, decoder E7 directly decodes the sum and loads the decoded low into one of the counters. When GO goes low, the counters count from the loaded count until the counters all reach their maximum count. This count is a maximum length of 1024. At this time STOP goes low and clears the GO flip-flop of the state machine.

If the TIMER signals are all high, ALPHANUM goes low and data signals DVX11 and DVY11 are decoded by decoder E7. This is added to the scale factor and loaded into the counters.

The X and Y position counters: Therefore, the following description describes the counters.

The X position counters contain two down/up counters (C9, D9 and E9), respectively, and associated gates (B8 and H1). Each counter is a 12-bit binary number that determines the location of the beam on the monitor screen. Increasing or decreasing this number causes the beam to move to the right or left of the screen.

The state machine can preset this number from their previous coordinate values. The beam can then be drawn to a new location simultaneously, i.e., for drawing a new vector, the position than where the previous vector was drawn.
STATE MACHINE

The state machine is the "master controller" of the vector generator circuitry. It receives instructions from the game MPU, via the vector generator RAM. It carries out these instructions by accessing the appropriate sections of the vector generator ROM memory, using the vector generator program counter to do so. The state machine reads the vector generator ROM data (via Timer 0-3) and decodes this information to determine how it should use this data: 1) to draw a vector; 2) to move the monitor beam to a new position on the monitor display; 3) to "jump" to a new vector memory address; 4) to return to a previous vector memory address; or 5) to tell the game MPU that it has completed its current instructions, and is waiting for its next command.

The state machine consists of input gates B8 and E6, ROM C8, latch D6, clock circuitry A7, and decoder E8. Four bit input TIMERO thru TIMER3 is the operation code input to the state machine. The A4 thru A6 address input to ROM C8 tells the ROM which instructions to perform. Address inputs A0 thru A3 from latch D8 tells the ROM which state was last performed. The address A7 input GO tells the ROM that the position counters are presently drawing a vector. The HALT input to A7 tells the ROM that the vector generator has completed its operations.

During initial power-up of the game, the HALT signal is preset low. The microcomputer reads the high HALT signal through its switch input port (buffer M10) on data line DB0. This tells the microcomputer that the vector generator is halted and waiting for an instruction. To ensure that the beam is off when the state machine is halted, the high HALT, clocked through latch D8, results in a low BLANK to the Z axis output.

The microcomputer outputs an address that results in a DMAGO signal that causes HALT to go high, and clears the vector generator data latches. This makes TIMERO thru TIMER3 signals all low. The state machine now begins executing instructions, starting at vector memory location 0.

When the state machine receives the operation code for a HALT instruction, it outputs a low HALTSTROBE, setting the HALT flip-flop A9, and suspending state machine operation.

The GO signals load and enable the vector timer and the X and Y position counters and tell the ROM that the vector generator is now actively drawing a vector. The HALT input to GO flip-flop A9 sets the outputs to ensure that the vector timer and position counters are not active when the state machine is halted. When a low GOSTROBE is clocked through A9, the vector timer and X and Y position counters begin to operate from the GO, GO and GO* signals. When STOP is clocked through A9, the vector timer has reached its maximum count, and GO goes high. This means the vector has been drawn.

The VGCK input to the clock circuitry is a buffered 1.5 MHz clock signal from the microcomputer. This is the same frequency used to clock the MPU of the microcomputer. The signal clocks latch D8 unless the microcomputer is addressing the vector RAM or ROM memories (when VMEM goes low). Then the clock input to latch D8 goes high and stays high until VMEM goes high.
Counters F5, H5 and J5 contain the address of the next data byte (instruction) to be fetched from the Vector Generator memory. Because these counters point to the next instruction in memory to be retrieved and performed, they are called the program counter. This program counter is incremented one count (to the next sequential address) each time the information at its current address is loaded into data latch 0 or data latch 2.

The program counter may also be preset to "return" to a previous address which it had stored in its "stack". The stack consists of register files F4, H4, & J4, and down/up counter K5. The stack is a 4-word 12-bit memory, used to save the contents of the program counter for future reference. It is loaded when DMA PUSH is low. Immediately after information is written into the stack, counter K5 increments one count. Immediately before loading the program counter from the stack, counter K5 decrements one count.

data latches F7 and H7 and buffers H6 and J6.

The program counter may also be preset to "jump" to a new address. This new address can be loaded into the program counter from the vector generator memory via...
The address selector consists of multiplexers F3, H3, J3 and K3. When VMEM is low, the MPU of the microcomputer gains access to the address inputs of the vector generator memory. In this state, BUFFEN is from ϕ2 and VW (vector generator write) is low when ϕ2 and RWB are both low. When VMEM is high, the address input to the vector generator memory is from the vector generator program counter and state machine. In this state, BUFFEN and VW are both held high by the pullup resistors connected to the 2B and 3B inputs of multiplexer K3.

Address decoder L3 decodes address bits A11 and A12, and selects the RAM or one of the three ROMs of the vector generator memory.

This address-selecting arrangement allows the game MPU to access the vector generator memory, i.e., write data into the vector generator RAM to instruct the vector generator what it should do next. The address selector can then allow the vector generator program counter and state machine to access this same area of RAM also, and read what instructions were sent to it by the game MPU.
The vector generator memory consists of 16K of RAM and 4K of ROM. It may be directly accessed by the MPU of the microcomputer through the direct memory access port (DMA). Data is written in from the microcomputer thru data buffer R2 when BUFFEN and R/WB are low.

The 2Kx8 vector generator program memory chip N/P3 may be substituted with two equivalent 1Kx8 chips in location K4 L4.